Search form

Prof. Dr. Elke Nevoigt
Prof. Dr.
Professor of Molecular Biotechnology
School of Science
Life Sciences & Chemistry

Campus Ring 1 28759 Bremen Germany

+49 421 200-3249
e.nevoigt [at]
Research II, Room 113
Research Interests: 

An important focus of my laboratory during recent years has been the improvement of glycerol utilization by the yeast Saccharomyces cerevisiae. Due to its higher reducing power compared to sugars, we consider glycerol is an attractive carbon source for the fermentative production of chemicals. Another advantage of glycerol is that it does not exert the so-called Crabtree effect (ethanol production in the presence of oxygen) in wild-type S. cerevisiae strains. The latter characteristic of glycerol can be considered as an advantage for the production of biomass-related products such as proteins. Glycerol is a renewable carbon source and can, for example, be obtained from oil-plant biorefineries.

The initial challenge in terms of using glycerol as a carbon source for S. cerevisiae was that wild-type strains of this species utilize glycerol present in synthetic medium at very low rates if at all. Our group has been successful to greatly improve glycerol utilization in S. cerevisiae without the addition of complex medium supplements (Swinnen et al., 2016; Ho et al., 2017; Klein et al., 2016a).

To allow the fermentation of glycerol, we replaced the native glycerol catabolic FAD-dependent pathway by an NAD+-dependent one (Klein et al. 2016b). This pathway replacement will now enable us to make use of the additional reducing power of glycerol for the production of fermentation products.

In addition to establishing and improving product formation and substrate consumption pathways, we have also focused on the improvement of yeast’s stress tolerance for industrial applications based on renewable resources. For example, we have shed more light to the phenotype of improved acetic acid tolerance in S. cerevisiae (Swinnen et al., 2014; Fernandez-Nino et al., 2015; González-Ramos et al., 2016; Swinnen et al., 2016). Acetic acid is an inhibitor of microbial growth and inherently present in hydrolysates of lignocellulosic (non-edible) plant biomass.


Funded Projects: 
YEASTDOC Yeast Biotechnology Doctoral Training Programme
Academic Partners:
University College Cork (coordinator), INRA Montpellier, Jacobs University Bremen, University of Leicester, University of Milano-Bicocca, University of Minho
Partners from industry:
Lallemand, Heineken, Biotrend, Novamont, ACIB, Organobalance, Pernod-Ricard, EMLBEM
YEASTPEC Engineering of the yeast Saccharomyces cerevisiae for bioconversion of pectin-containing agro-industrial side-streams
Academic Partners:
Jacobs University Bremen (coordinator), Technical University Lisbon, TU MunichVTT, Technical Research Centre of Finland Ltd
Partners from industry:
Metabolic engineering of baker’s yeast for more efficient respiratory and fermentative glycerol utilization
IPCRES Integrated Process and Cell Refactoring Systems for Enhanced Industrial Biotechnology
Academic Partners:
University College London (coordinator) Autonomous, University of Barcelona, Jacobs University Bremen, Technical University of Denmark, University of Strathclyde
Partners from industry:
Ingenza, SilicoLife, BioProdict
INTACT Integral Engineering of Acetic Acid Tolerance in Yeast
Academic Partners:
Delft University of Technology (coordinator) Autonomous University of Barcelona, Jacobs University, Technical University Lisbon



International peer-reviewed publications
Ho, P.-W., Swinnen, S., Duitama, J., Nevoigt, E. (2017) The sole introduction of two single point mutations establishes glycerol growth in Saccharomyces cerevisiae CEN.PK derivatives. Biotechnol. Biofuels. 10, 10.

Klein, M., Swinnen, S., Thevelein, J.M., Nevoigt, E. (2017) Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Invited minireview for Environ. Microbiol. 19, 878-893.

Swinnen, S., Henriques, S.F., Shrestha, R., Ho, P.-W., Sá-Correia, I., Nevoigt, E. (2016) Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb. Cell Fact. 16, 7.

Klein, M., Carrillo, M., Xiberras, J., Islam, Z.-U., Swinnen, S., Nevoigt, E. (2016) Towards the exploitation of glycerol’s high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab. Eng. 38, 464-472.

Klein, M., Islam, Z.U., Boldsen Knudsen, P., Carrillo, M., Swinnen, S., Workman, M., Nevoigt, E. (2016) The expression of glycerol facilitator homologues from various yeast species improves growth on glycerol of Saccharomyces cerevisiae. Metab. Eng. Commun. 3, 252-257.

González-Ramos, D., Gorter de Vries, A.R., Grijseels, S.S., van Berkum, M.C., Swinnen, S., van den Broek, M., Nevoigt, E., Daran, J.M., Pronk, J.T., van Maris, A.J. (2016) A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol. Biofuels 9, 173.

Swinnen, S., Ho, P.-W., Klein, M., Nevoigt, E. (2016) Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Metab. Eng. 36, 68-79.

Fernández Niño, M., Marquina, M, Swinnen, S., Rodríguez-Porrata, B., Nevoigt, E., Ariño, J. (2015) Cytosolic pH of individual Saccharomyces cerevisiae cells is a key factor for acetic acid tolerance. Appl. Environ. Microbiol. 81, 7813-21.

Hubmann, G., Thevelein, J.M. and Nevoigt, E. (2014) Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. Methods Mol. Biol. 1152, 17-42.

Swinnen, S., Fernández Niño, M., González-Ramos, D., van Maris, A. J. A., Nevoigt, E. (2014) The fraction of cells that resume growth after acetic acid addition is a strain‑dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 642-53.

Swinnen, S., Klein, M., Carrillo, M., McInnes, J., Nguyen, H.T.T., and Nevoigt, E. (2013)  Re-evaluation of glycerol utilization in the species Saccharomyces cerevisiae: characterization of an isolate which grows on glycerol without supporting supplements. Biotechnol. Biofuels 6, 157.

McInnes, J., Rehders, M., McFaline-Figueroa, J. R., Brix K., Pon, L.A., Nevoigt, E. (2013) Defects in mitochondrial distribution during the prolonged lag phase of Saccharomyces cerevisiae preceding growth in glycerol as the sole source of carbon. FEMS Yeast Res. 13, 706-10.

Hubmann, G., Mathé, L., Foulquié-Moreno, M.R, Duitama, J., Nevoigt, E. and Thevelein, J.M. (2013) Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnol. Biofuels 6, 87.

Pagliardini, J., Hubmann, G., Alfenore, S., Nevoigt, E., Bideaux, C., Guillouet, S.E. (2013) The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Microb. Cell Fact. 12, 26.

Hubmann, G., Nevoigt, E., Martins Pais, T., Foulquie y Moreno, M. R., Thevelein, J.M. (2013) Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. Metab. Eng. 17, 68-81.

Swinnen S., Thevelein, J.M., Nevoigt, E. (2012) Genetic mapping of quantitative phenotypic traits in S. cerevisiae. Invited review for FEMS Yeast Res. 12, 215-227.

Duong, C. T. Strack, L. Futschik, M. Katou, Y. Nakao, Y. Fujimura, T. Shirahige, K.  Kodama, Y.  Nevoigt, E.  (2011) Identification of Sc‑type ILV6 as a target to reduce diacetyl formation in lager brewers’ yeast. Metab. Eng. 13, pp. 638-647.

Hubmann, G., Guillouet, S., Nevoigt, E. (2011) Gpd1 and Gpd2 fine tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 77, 5857–5867.

Tyo, K.E.J., Nevoigt E., Stephanopoulos, G. (2011) Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation. Methods Enzymol. 497, 135-55.

Pagliardini, J.,  Hubmann, G., Bideaux, C., Alfenore, S., Nevoigt, E. and Guillouet, S. E. (2010) Quantitative evaluation of yeast’s requirement for glycerol formation in Very High Ethanol Performance fed-batch process. Microb. Cell Fact. 9, 36-48.

Saerens, S.M.G., Duong, C.T. and Nevoigt, E. (2010) Genetic improvement of brewers’ yeast: current state, perspectives and limits. Appl. Microbiol. Biotechnol. 86, 1195-1212.

Nguyen, H.T.T. and Nevoigt, E. (2009) Production of DHA in Saccharomyces cerevisiae: a proof of principle. Metab. Eng. 11, 335-46.

Nevoigt, E. (2008) Progress in metabolic engineering of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72, 379-412.

Donalies, U.E.B., Nguyen, H.T.T., Stahl, U. and Nevoigt, E. (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. In: Stahl, U., Donalies, U.E.B., Nevoigt, E. (eds.) Adv. Biochem. Eng. Biotechnol. 111, 67-98.

Nguyen, H.T.T., Popp, A. , Boulahya, K., Bideaux, C., Alfenore, S., Guillouet, and Nevoigt, E. (2008) Fermentative production of L-glycerol 3-phosphate utilizing a Saccharomyces cerevisiae strain with engineered glycerol biosynthetic pathway. Biotechnol. Bioeng. 100, 497-505.

Nevoigt, E., Fischer, C., Mucha, O., Matthäus, F., Stahl, U. and Stephanopoulos, G. (2007) Engineering promoter regulation. Biotechnol. Bioeng. 96, 550-558.

Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., and Stephanopoulos, G. (2006) Engineering yeast transcription machinery for improved bioethanol tolerance and production. Science 314, 1565-1568.

Fischer, C., Alper, H., Nevoigt, E., Jensen, K.L. and Stephanopoulos, G. (2006) Response to Hammer et al.: Tuning genetic control – importance of thorough promoter characterization versus generating promoter diversity. Trends Biotechnol. 22 ,55-56.

Nevoigt, E., Kohnke, J., Alper, H., Fischer, C., Stahl, U. and Stephanopoulos, G. (2006) A collection of promoter replacement cassettes for tuning gene expression in yeast. Appl. Environ. Microbiol. 72, 5266-73.

Diese Publikation wurde für die  ASM Journal Highlights ausgewählt (Microbe, 10/2006).

Alper, H., Fischer, C., Nevoigt, E. and Stephanopoulos, G. (2005) Tuning Genetic Control through Promoter Engineering. Proc. Natl. Acad. Sci. U.S.A 102, 12678-12683.

Nguyen, H.T.T., Dieterich, A., Athenstaedt, K., Truong, N.H., Stahl, U. and Nevoigt, E. (2004) Engineering of Saccharomyces cerevisiae for the production of L-glycerol 3-phosphate. Metab. Eng. 6, 155-163

Nevoigt, E., Pilger, R., Mast-Gerlach, E., Schmidt, U., Freihammer, S., Eschenbrenner, M., Garbe, and Stahl, U. (2002) Engineered brewing yeasts overproducing glycerol at the expense of ethanol. FEMS Yeast Res. 2, 225-232.

Nevoigt, E., Fassbender, A. and Stahl, U. (2000) Cells of the yeast Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions. Yeast 16, 1107-1110.

Nevoigt, E. and Stahl, U. (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21, 231-241.

Nevoigt, E. and Stahl, U. (1996) Reduced pyruvate decarboxylase (PDC) and increased glycerol-3-phosphate dehydrogenase [NAD+] (GPD) levels enhance glycerol production in Saccharomyces cerevisiae.Yeast 12, 1331-1337.

Bernhardt, R., Uhlmann, H., Nevoigt, E., Vogel, R., Beckert, V., Schwarz, D. and Henning, M. (1992) Expression systems for the components of mitochondrial steroid hydroxylases. J. Basic Clin. Physiol. Pharmacol. 3, 115.

Book Contributions                                                
Leisegang, R., Nevoigt, E., Spielvogel, A., Kristan, G., Niederhaus, A. and Stahl, U. (2006) Fermented food production using genetically modified yeast and filamentous fungi. In Heller, K. J. (ed.) Genetically Engineered Food. 2nd Edition, Wiley-VCH, Weinheim, ISBN: 3-527-31393-1

German Journals
Nguyen, H.T.T., Dieterich, A., Stahl, U., and Nevoigt, E. (2003) Genetische Optimierung der Bäckerhefe zur Produktion von L-Glycerol-3-Phosphat. Transkript Sonderheft Nachhaltige Biokatalyse, 47-49.

Nevoigt, E., Nguyen, H.T.T., Stahl, U. (2001) Biotechnologische Produktion von L-Glycerol-3-Phosphat. Biospektrum Sonderausgabe “Biokatalyse”, 33-35.

Editorial work
Meyer, V., Nevoigt, E., Wiemann P. (2016) The Era of Synthetic Biology in Yeast and Filamentous Fungi, Fungal Genet. Biol. 86

Alper, H., Cirino, P., Nevoigt, E., Sriram, G. (2011) Applications of synthetic biology in microbial biotechnology. J. Biomed. Biotechnol.

Stahl, U., Donalies, U.E.B., Nevoigt, E. (2008) Food biotechnology, Adv. Biochem. Eng. Biotechnol. 111.

Nevoigt, E. (2016) Gentechnisch veränderte Hefe zur Fermentation von Glycerol.

Nevoigt, E. (2014) Gentechnisch veränderte Hefe mit verbessertem Glycerol-Katabolismus.   DE102014109858 (A1), Priority date: 14.07.2014.

Nevoigt, E., C. Bideaux, S. Alfenore, S. E. Guillouet (2007) Method of modifying a yeast cell for the production of ethanol. WO2009056984 (A1), Priority date: 29.10.2007.
→ 2015 wurden die Rechte an DuPont Danisco verkauft

Alper, H., Fischer, C., Nevoigt, E. and Stephanopoulos, G. (2006) Promoter engineering and genetic control. WO2007079428 (A3), Priority date: 03.01.2006.

Alper, H., Fischer, C., Nevoigt, E. and Stephanopoulos, G. (2005) Promoter engineering and genetic control.  Internationale Patentanmeldung: WO2006116400 (A3), Priority date: 27.04.2005.

Lang, C., Gessner, R., Neukamm, B., Prinz, B., Nevoigt, E. (2003) Screening method for discovering auxiliary promoting endocytosis. Internationale Patentanmeldung: WO0216935 (A9), Priority date: 23.08.2000.


Work Experience: 
Since 11/2009Associate Professor for Molecular Biotechnology, Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
02/2008-10/2009Expert scientist at VIB, Dept. Molecular Microbiology & KU Leuven, Lab. for Molecular Cell Biology, Belgium
06/2004-03/2005Visiting scientist at MIT, Department of Chemical Engineering, USA
05/1996-01/2008Post-Doctoral Research Scientist, Berlin University of Technology, Department of Microbiology and Genetics, Germany
01/1992-04/1996Ph.D. research, Department of Microbiology and Genetics, Berlin University of Technology,
08/1990Degree in Biology, Humboldt University Berlin, Germany